Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Hypertens ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38704218

RESUMO

OBJECTIVES: γδ T-lymphocytes play a role in angiotensin II (AngII)-induced hypertension, vascular injury and T-cell infiltration in perivascular adipose tissue (PVAT) in mice. Mesenteric arteries of hypertensive mice and subcutaneous arteries from obese humans present similar remodeling. We hypothesized that γδ T-cell subtypes in mesenteric vessels with PVAT (MV/PVAT) from hypertensive mice and subcutaneous adipose tissue (SAT) from obese humans, who are prone to develop hypertension, would be similar. METHODS: Mice were infused with AngII for 14 days. MV/PVAT T-cells were used for single-cell RNA-sequencing (scRNA-seq). scRNA-seq data (GSE155960) of SAT CD45+ cells from three lean and three obese women were downloaded from the Gene Expression Omnibus database. RESULTS: δ T-cell subclustering identified six δ T-cell subtypes. AngII increased T-cell receptor δ variable 4 (Trdv4)+ γδ T-effector memory cells and Cd28high δ TEM-cells, changes confirmed by flow cytometry. δ T-cell subclustering identified nine δ T-cell subtypes in human SAT. CD28 expressing δ T-cell subclustering demonstrated similar δ T-cell subpopulations in murine MV/PVAT and human SAT. Cd28+ γδ NKTEM and Cd28high δ TEM-cells increased in MV/PVAT from hypertensive mice and CD28high δ TEM-cells in SAT from obese women compared to the lean women. CONCLUSION: Similar CD28+ δ T-cells were identified in murine MV/PVAT and human SAT. CD28high δ TEM-cells increased in MV/PVAT in hypertensive mice and in SAT from humans with obesity, a prehypertensive condition. CD28+ δ T-lymphocytes could have a pathogenic role in human hypertension associated with obesity, and could be a potential target for therapy.

2.
J Hypertens ; 41(11): 1701-1712, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37796207

RESUMO

OBJECTIVE: Extracellular ATP is elevated in hypertensive mice and humans and may trigger immune activation through the purinergic receptor P2X7 (P2RX7) causing interleukin-1ß production and T-cell activation and memory T-cell development. Furthermore, P2RX7 single nucleotide polymorphisms (SNP) are associated with hypertension. We hypothesized that P2RX7 activation contributes to hypertension and cardiovascular injury by promoting immune activation. METHODS: Male wild-type and P2rx7-/- mice were infused or not with angiotensin II (AngII) for 14 days. A second group of AngII-infused wild-type mice were co-infused with the P2RX7 antagonist AZ10606120 or vehicle. BP was monitored by telemetry. Cardiac and mesenteric artery function and remodeling were assessed using ultrasound and pressure myography, respectively. T cells were profiled in thoracic aorta/perivascular adipose tissue by flow cytometry. Associations between SNPs within 50 kb of P2RX7 transcription, and BP or hypertension were modeled in 384 653 UK Biobank participants. RESULTS: P2rx7 inactivation attenuated AngII-induced SBP elevation, and mesenteric artery dysfunction and remodeling. This was associated with decreased perivascular infiltration of activated and effector memory T-cell subsets. Surprisingly, P2rx7 knockout exaggerated AngII-induced cardiac dysfunction and remodeling. Treatment with a P2RX7 antagonist reduced BP elevation, preserved mesenteric artery function and reduced activated and effector memory T cell perivascular infiltration without adversely affecting cardiac function and remodeling in AngII-infused mice. Three P2RX7 SNPs were associated with increased odds of DBP elevation. CONCLUSION: P2RX7 may represent a target for attenuating BP elevation and associated vascular damage by decreasing immune activation.


Assuntos
Hipertensão , Lesões do Sistema Vascular , Humanos , Camundongos , Masculino , Animais , Angiotensina II/farmacologia , Técnicas de Inativação de Genes , Hipertensão/induzido quimicamente , Hipertensão/genética , Linfócitos T , Camundongos Knockout , Camundongos Endogâmicos C57BL , Receptores Purinérgicos P2X7/genética
3.
Hypertens Res ; 46(1): 40-49, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36241706

RESUMO

A subset of interleukin (IL)-17A-producing γδ T cells called γδT17 cells may contribute to progression of hypertension. γδT17 cell development is in part dependent upon IL-23 receptor (IL-23R) stimulation. We hypothesized that angiotensin (Ang) II-induced blood pressure (BP) elevation and vascular injury would be blunted in Il23r knock-in (Il23rgfp/gfp) mice deficient in functional IL-23R. To test this hypothesis, we infused wild-type (WT) and Il23rgfp/gfp mice with Ang II (490 ng/kg/min, SC) for 7 or 14 days. We recorded BP by telemetry, assessed vascular function and remodeling using pressurized myography, and profiled T cell populations and cytokine production by flow cytometry. An additional set of Il23rgfp/gfp mice was infused with Ang II for 7 days and injected with interferon (IFN)-γ-neutralizing or control antibodies. Il23rgfp/gfp mice had smaller and stiffer mesenteric arteries and were not protected against Ang II-induced BP elevation. BP was higher in Il23rgfp/gfp mice than WT mice from day 3 until day 9 of Ang II infusion. Il23rgfp/gfp mice had less γδT17 cells and more IFN-γ-producing γδ, CD4+, and CD8+ T cells than WT mice. Seven days of Ang II infusion led to increased IFN-γ-producing γδ, CD4+, and CD8+ T cells in Il23rgfp/gfp mice, whereas only IFN-γ-producing γδ T cells were increased in WT mice. Blocking IFN-γ with a neutralizing antibody reduced the pressor response to 7 days of Ang II infusion in Il23rgfp/gfp mice. Functional IL-23R deficiency was associated with increased IFN-γ-producing T cells and exaggerated initial development of Ang II-induced hypertension, which was in part mediated by IFN-γ.


Assuntos
Angiotensina II , Linfócitos T CD8-Positivos , Hipertensão , Animais , Camundongos , Angiotensina II/farmacologia , Pressão Sanguínea , Hipertensão/induzido quimicamente , Interferon gama , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética
4.
Can J Cardiol ; 38(12): 1828-1843, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35597532

RESUMO

Hypertension is the leading risk factor for cardiovascular disease and mortality worldwide. Despite intensive research into the mechanisms underlying the development of hypertension, it remains difficult to control blood pressure in a large proportion of patients. Young men have a higher prevalence of hypertension compared with age-matched women, and this holds true until approximately the fifth decade of life. Following the onset of menopause, the incidence of hypertension among women begins to surpass that of men. The immune system has been demonstrated to play a role in the pathophysiology of hypertension, and biological sex and sex hormones can affect the function of innate and adaptive immune cell populations. Recent studies in male and female animal models of hypertension have begun to unravel the relationship among sex, immunity, and hypertension. Hypertensive male animals show a bias toward proinflammatory T-cell subsets, including interleukin (IL) 17-producing TH17 cells, and increased renal infiltration of T cells and inflammatory macrophages. Conversely, premenopausal female animals are largely protected from hypertension, and have a predilection for anti-inflammatory T regulatory cells and production of anti-inflammatory cytokines, such as IL-10. Menopause abrogates female protection from hypertension, which may be due to changes among anti-inflammatory T regulatory cell populations. Since development of novel treatments for hypertension has plateaued, determining the role of sex in the pathophysiology of hypertension may open new therapeutic avenues for both men and women.


Assuntos
Hipertensão , Caracteres Sexuais , Animais , Feminino , Masculino , Hipertensão/epidemiologia , Pressão Sanguínea/fisiologia , Linfócitos T , Rim
5.
Arterioscler Thromb Vasc Biol ; 41(1): 186-199, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32998520

RESUMO

Chronic low-grade inflammation contributes to the development of several diseases, including cardiovascular disease. Adequate strategies to target inflammation in cardiovascular disease are in their infancy and remain an avenue of great interest. The purinergic receptor P2X7 is a ubiquitously expressed receptor that predominately mediates inflammation and cellular death. P2X7 is a ligand-gated cation channel that is activated in response to high concentrations of extracellular ATP, triggering the assembly and activation of the NLRP3 (nuclear oligomerization domain like receptor family pyrin domain containing 3) inflammasome and subsequent release of proinflammatory cytokines IL (interleukin)-1ß and IL-18. Increased P2X7 activation and IL-1ß and IL-18 concentrations have been implicated in the development of many cardiovascular conditions including hypertension, atherosclerosis, ischemia/reperfusion injury, and heart failure. P2X7 receptor KO (knockout) mice exhibit a significant attenuation of the inflammatory response, which corresponds with reduced disease severity. P2X7 antagonism blunts blood pressure elevation in hypertension and progression of atherosclerosis in animal models. IL-1ß and IL-18 inhibition has shown efficacy in clinical trials reducing major adverse cardiac events, including myocardial infarction, and heart failure. With several P2X7 antagonists available with proven safety margins, P2X7 antagonism could represent an untapped potential for therapeutic intervention in cardiovascular disorders.


Assuntos
Anti-Inflamatórios/uso terapêutico , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Sistema Cardiovascular/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X7/efeitos dos fármacos , Animais , Anti-Inflamatórios/efeitos adversos , Fármacos Cardiovasculares/efeitos adversos , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Humanos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Antagonistas do Receptor Purinérgico P2X/efeitos adversos , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA